
Distributed Network Security

Dipl.-Ing. Oliver Welter, Dipl.-Ing. Andreas Pilz
Technische Universitaet Muenchen

welter@tum.de

Abstract

IP-based networks form the base of todays
communication infrastructure. The interconnection of
formerly isolated networks brings up severe security
issues. The standard approach, to protect the own
network from abuse, is the usage of filter mechanisms
at the border to the foreign network.

The raising complexity of protocols and the use of
encryption techniques render most of these border-
oriented systems useless, as their are not able to track
or analyze the transfered data.

The approach discussed in this article splits into
three parts – first we invent distributed sensors which
enlarge the amount of data available for analysis by
accessing information directly at its source. To
integrate these into the classic border oriented system
we create an abstract interface and management
system, based on the Common Information Model.

Finally we will divide the management system itself
into independent components, distribute them over the
network and gain significant increase of performance.

1. Topical security systems

The interconnection of formerly private and
isolated communication networks enables new forms
of services and applications, but brings also new
threats and the need for appropriate defense
mechanisms. Until today, most networks are secured
by firewalls which apply IP-packet-filtering at the
interface between the internal and the external
network.

This raises two major problems: First, as traffic is
allowed or denied only based on IP-packet
information, it is impossible to associate traffic to
certain applications or process on the client machines
in the internal network. If a client is infected by
malicious software, collecting and sending information
to an outside attacker e.g. through the standard HTTP
port, the firewall may identify this as allowed traffic to
a webpage server and hence allows the packets to
leave the network.

On the other hand there are applications, especially
for streaming media, which do not follow the classic
client-server-model, where connections are always
established by the client using well-known determined
resources but use bidirectional peer-to-peer
connections instead. They usually allocate these
resources randomly, making it impossible to define an
ip-based rule set without either understanding the
protocol stream or gathering additional information on
the client.

In some setups the problems stated above can be
solved when analyzing the payload of the passing IP-
packets. There are several different techniques
available in the market, all of them basically do the
same – they re-assemble the extracted payload to the
originating higher-level protocol and apply filter rules
to it. This method implies two things. First – the
system must implement the specification of the
watched protocol. In theory this problem can be
solved, but in practice, many specifications are not
available to the public and the number of different
protocols raises every day. Additionally, as there is no
standard for such filters, every system-vendor must
build the filters for his own product. As soon as the
payload is encrypted, there is no chance to gather
information from the stream.

Due to these two problems, it is impossible to build
a reliable and secure firewall system, when only
inspecting traffic at the time it crosses the border. The
only place where we can gather more data, is the
source of the traffic, so we introduced a sensor on the
endpoint of the network – the client-computer.

There are some commercial products available, that
implement some of the techniques discussed in this
article. All of them use proprietary control streams and
interfaces so it is impossible to combine different
products.

2. Client-side information gathering

The client-computer is the source of all traffic
going through the network and crossing the border
gateway. The most important information regarding
our security system is the process that initiates the

network packet. On a modern multi-task, multi-user
operating system like Linux oder MS Windows a
process has two significant properties. Each process is
associated with a system user, who is the owner of the
process and herewith creator and owner of the network
packet. The second attribute we can assign to a process
is the “program” that is executed by this process. To
give an example – we can state that the connection to
the webserver from “amazon.com” was triggered by
the user “john” using the program located at
“/usr/local/mozilla/mozilla-bin”.

This information is very valuable for the security
system. The program information tells us, that the
requesting application is a legal webbrowser and not
some malware, that tries to send out or download data.
With the owner attribute we can of course simply
check, if the user is allowed to use the resources, but
we can do more – if a lot of process are started on
different machines all over the network from the same
user account, it is likely that the password of the user
was compromised and someone is abusing this to gain
access to restricted resources.

2.1. Technical prerequisites

All research within our group is based on the CIM
Model [1] and uses the WBEM server from Sun
Microsystems [2], which is written in Java. The
decision for this WBEM implementation was taken,
because we wanted a portable solution for at least the
two operating systems that we are using in our group –
Linux and Windows. Besides the portability the
security aspect of the virtual machine concept was
another reason for our decision.

To keep this advantages we wrote all other
components in Java, too and tried to use the “Java
Native Interface” Standard [3] for operating system
dependent bindings.

2.2. Packet capture

As our approach centers on the network traffic, the
packet is our starting point for all further analysis. So
we begun with a component called “Packet Sensor
Agent (PSA)”. This program resides on the client
computer and runs as a daemon in the background. Its
task is capturing the network packets, preprocessing
them and sending this information to a higher level
application. The grabbing of packets unfortunately
depends on the underlying operating system and is not
available to the native Java language. The solution is
the jpcap wrapper [4] – a java interface to the pcap
packet capture library [5], which is available on the
relevant systems. Both products are covered by open

source licenses, so we can build a portable and royalty
free packet capture program.

The jpcap creates a bundle of java objects for each
captured packet, representing the different OSI layers
of the packet. This internal format is optimized for
speed when processing the captured data by the
information of the single layers, but even if its open
sourced, it is again a proprietary format, and not
covered by standards. So the next step, was to find or
create a structure in CIM, to put the data in.

CIM had no representation for network packets, but
there were classes for network filters. Because filter
and packet depend on each other, we decided to create
a CIM structure describing packets based on the class
“FilterEntryBase” and its subclasses. First we created
a generic base class “PacketBase” as superclass for all
network packet classes, then we derived the class
“IPPacket” and “8021Packet”. The attributes of the
new classes were taken from the corresponding filter
classes. Entries describing a range of values were
converted to a single value entry, so “HdrSrcPortStart”
and “HdrSrcPortEnd” from “IPHeadersFilter” became
“HdrSrcPort” in “IPPacket”.

Figure 1. Packet and Filter for IP-Layer

Now we can represent the data in TCP/IP and UDP
headers and the data of an ethernet frame. To stick
ethernet and IP information on a packet together, we
transfered the list/entry concept from the filter model.
The “FilterList” merges multiple subclasses of
“FilterEntryBase”, we defined a “NetworkPacket” that
can concatenate different packet classes to one packet.

2.3. Process information

The second interesting attribute is the process
information related to a network packet. So who (user)
and what (program) is responsible for the packet.

The CIM Model already has classes for process and
user to model a whole operating system's state. It is
possible to extract all wanted information from the
model, but as our operating systems are not using such
structures, their not available for our analysis. So we
must find another way to gather this information,

IPHeadersFilter

HdrIPVersion: uint8
HdrSrcAddress: uint8[]
HdrSrcAddressEndOfRange: uint8[]
HdrSrcMask: uint8[]
HdrDestAddress: uint8[]
HdrDestAddressEndOfRange: uint8[]
HdrDestMask: uint8[]
HdrProtocolID: uint8
HdrSrcPortStart: uint16
HdrSrcPortEnd: uint16
HdrDestPortStart: uint16
HdrDestPortEnd: uint16
HdrDSCP: uint8[]
HdrFlowLabel: uint8[]

IPPacket

HdrIPVersion: uint8
HdrSrcAddress: uint8[]

HdrDestAddress: uint8[]

HdrProtocolID: uint8
HdrSrcPort: uint16

HdrDestPort: uint16

HdrDSCP: uint8[]
HdrFlowLabel: uint8[]

which is an operating system dependent task. As with
the packet grabber we will use the java native interface
to access the netstat program [6]. A tool that shows
the relation between network resources, process and
users.

In the next step we tried to put the gathered data
into CIM classes. Using the existing schemes, the
information needed for our approach is spread over a
number of classes. This causes a huge overhead
because we must create instances, not carrying useful
data for us. So we finally decided to create our own
structure “ProcessData” that simply carries the data for
user and process and add it to the “NetworkPacket” in
the same way as the single packets of the network
layers. This implies, that “ ProcessData” is a subclass
of “PacketBase” otherwise we could not add it to
“NetworkPacket”. This is bit ugly, but as we do not
need other classes at the moment this trick keeps
things simple.

Figure 2. Class structure of a network packet

The better way would be, to derive one class each
for user and process from a suitable hierarchy and
make a branch with one list for each aspect like shown
in this figure.

Figure 3. alternative structure for a network packet

2.4. Populate the information

Now it is time to populate the information to the
border gateway. To do this in a convenient way, we
will make the assumptions, that gateway and client
share a common CIM repository.

When a packet is detected by the Packet Sensor
Agent, the information is converted into CIM objects
and put into the repository. The gateway can use time-

based polling, to see if there are new packets available,
and make configuration changes before the packet
arrives at the border. Otherwise it can ask the WBEM
server whenever a packet arrives at the border, to see if
there is additional information available. The third
method is, to inform the gateway when a new packet
arrives at the repository.

2.5. Enhancements and problems

The system described in this chapter brings us one
major feature - we can associate traffic with a process
and user. This is useful to prevent certain kinds of
malware from “phoning home” or abusing the network
for sending viruses or opening backdoors. On the other
hand it helps tracking legal software, that uses peer-to-
peer communication and dynamic resource allocation.
This recommends, that the gateway is able to
understand the process information and includes it into
the filter rules. Before taking a look at a possible
implementation on the gateway, we have to discuss the
problems associated with this approach.

One major problem is the performance of the
system – in a busy network, the amount of collected
packet information is enormous and will tear the
central repository to the ground. Besides, the delay
between detection and availability at the gateway is
multiple times longer as the real packet needs to reach
the gateway, so time critical applications, like
videoconferencing, will not work well.

Another problem regarding availability is the
central repository itself – as all information is
collected and redistributed by it, a failure or
breakdown of this system will bring down the whole
network.

Under aspects of security, we must ensure that the
agents collect and populate correct data and that it is
impossible to fake or manipulate an agent. Both can
enable an intruder to take over the total control on the
network.

3. Traffic Management Provider

The Traffic Management Provider (TMP) is the
missing piece between the capturing agent from the
above chapter and the packet filter gateway at our
network border. In general, a packet filter has a static
rule set against which the passing packets are
analyzed. No interaction with the outside happens for
deciding about a packets way, so what we must do, is
to plan and apply the packet filter rules based on
packet data and the additional process information
before the packet is processed by the filter.

The preferable method for the notification problem
was the implementation of the TMP as a provider

8021Packet

HdrSrcMACAddr8021
HdrDestMACAddr8021
HdrProtocolID8021

IPPacket

HdrIPVersion:
HdrSrcAddress:
.
.
.

ProcessData

User: string
Program: string

ProcessData

8021Packet

HdrSrcMACAddr8021
HdrDestMACAddr8021
HdrProtocolID8021

IPPacket

HdrIPVersion:
HdrSrcAddress:

User

User: string

NetworkFilterList

NetworkPacket

Process

Program: string

within the CIMOM. So we do not need to make
another external connection with the server and can
easily use the subscription mechanism to get notified
on a new packet.

So the functional description for our TMP as a
black box is like: receive information on new packets
by subscribing to suitable CIM events, compare the
available information against a policy database and
establish an adequate packet filter rule on the gateway.
The description consists of three separated tasks – the
solution of the first one is mentioned above, the
second is the most complex one and depends on the
way we deal with the third - so we will start with the
communication with the gateway.

3.1. Controlling a packet filter

When we talk about packet-filters we take the
netfilter project [7] as a reference. The netfilter tools
allow the filtering of IP and ethernet based traffic in a
simple but effective way. The rules consist of a
condition, which can test on nearly all parameters in
ethernet and IP headers and additional on some
parameters in transport layer protocols like ICMP,
TCP and UDP, followed by one of the three actions
drop, reject, accept.

Taking a look at the CIM scheme we can find a
suitable description for the most items. The test
condition will fit into the filter classes we already used
as a blueprint to develop our packet classes. To build a
rule, we can use the policy model . A policy in CIM is
defined with a condition and an action part, so the
policy condition side will carry a link to our packet
filter classes and the policy action must contain simply
a representation of one of the three possible actions.

We will represent the action part of the rule by an
enumeration value in a class “PacketPolicyAction”
derived from “PolicyAction”.

The representation of a complete filter entry is
shown in figure 4.

Figure 4. Policy describing a netfilter rule

To commit these PolicyRules to a real netfilter
appliance we have three possibilities.

Building the appliance as a CIM client that polls
data from the repository, registering a provider that
subscribes on events related to the policy classes or
connecting the appliance to the TMP via a proprietary
network channel. Even if the first and second ones are

the preferable way regarding the overall CIM
approach, we chose a mixture of the first and the third
one, due to performance issues. As we wanted a
connection from the server to the client without the
disadvantages of polling and all components in our
system are written in Java, we decided to connect them
via RMI and send the data as CIM instances. We can
substitute this solution with a fully CIM standard one
by establishing a CIM server on the netfilter client and
writing the CIM instances onto this “local server”. The
TMP provider will than act as client with the netfilter
appliance.

3.2. Policy controller

The main task of the “Traffic Management
Provider” is to decide if the incoming data-packet
should pass the gateway or not. The decision is based
on rules given by an administrator, these are held in
the “policy lookup table” as a collection of instances
of CIM's “Policy” classes.

In the preceding chapters we already talked about
the policy model within CIM and how we modeled the
network packet filters. To filter on the user and
process information we receive from the client-side
sensors we created “ProcessDataFilter” which simply
contains two strings. Now we have everything we
need to create a filter rule that we can compare against
an incoming “NetworkPacket”.

When a new packet is detected by a client sensor,
new instances of “NetworkPacket” and the associated
classes are created on the CIM server. The creation
triggers the event handler and notifies the TMP, where
it is compared against the condition part of all policies
in the “policy lookup table”. When a condition
matches the packet, a new rule for the gateway is
created. This is done by taking all parameters from the
incoming packet, that are necessary for the rule to
match and writing a new policy condition with these.
The appropriate action for the netfilter gateway is
taken from the rule and the policy is written to the
netfilter client.

To filter on complex relations or enable content
filtering the policy controller can be extended using a
plugin interface.

4. Distributed services

Upon now we had a very simple setup with one
security gateway and some clients that act only as a
sensor. The concentration of all decisions to one point
in the network makes the whole system slow and
sluggish so we tried to distribute the single tasks over
the network to decrease the necessary amount of

PacketPolicyAction

Action: string

NetfilterPolicy

8021Packet IPPacket

NetworkPacket

requests to the central server and increase the level of
security.

4.1. Active client

The first step for our improvement is the active
client. Instead of only monitor and report data to the
central server, the client gets its own local filter
mechanism.

By default the client has no filter rules loaded into
its rule base, so all traffic is denied and is unable to
even enter the network. This prevents attacks inside
the own network and decreases the useless traffic, that
is send to the network and blocked on the border. The
configuration of the clients filter rule set is done the
same way like the netfilter gateway.

This implementation is good for security but
increases the load on the central server, because it
must now calculate and deploy the rules to the client.
To get rid of this load, we must do the decision already
on the client. We transfered some parts of the policy
lookup table to the client and implemented a local
policy controller, what enabled the client to make
decisions on the fate of a packet without connecting
the central repository. This additionally recommends,
that packets which are checked and allowed by the
client can cross the border gateway without further
inspection. To ensure the consistency of the applied
security rules we must keep track of the rules set
locally and on the border gateway.

4.2. Network Security Service Manager

The “Network Security Service Manager” (NSSM)
replaces the direct interaction of the TMP and the
attached netfilter clients - as we will introduce
security mechanisms other than netfilters, we will now
start speaking of security devices that provide security
services. So the task of the NSSM is to distribute the
decision of the policy controller to the affected
devices. Referring to the last chapter, we will make an
example.

We have a PC in a company network and want to
open a ftp connection to somewhere outside using an
internal proxy server. The connection must pass three
security devices within the company: first the PC's
local firewall, the proxy server and the border
gateway. The initiating connection is detected by the
sensors of the client PC and reported to the TMP.
There is a policy in the lookup table that allows the
connection, and so the TMP decides to accept the
packet. The initiating packet and the decision is now
routed to the NSSM where we make a forecast on the
upcoming related packets. Now the rule set is split into
three parts, one for each of the security devices: For

the proxy server and the border gateway we allow all
packets that match the forecast. The local client
receives the information about the forecast and is
allowed to accept packets related to the originating
request that are within the forecast.

This example implies two things, that have not been
discussed until now. First, the NSSM must find all
security devices that are involved processing the
current request. As far as the request is attached to the
network, we can do so by reading out the network
structure from the CIM server. By extracting routing
and topology information we can determine the way of
each packet through the network and find the affected
devices.

Figure 5: Distributed services

The second issue is not solvable with the CIM
standard at the moment. To keep the filters effective,
the NSSM must know about the capabilities of each
security device, so we created a class tree to store
information about a devices capabilities in the CIM.

5. Capabilities model

The capability model provides a set of classes that
describe the features of a security device. The basic
concept follows the already used policy model – we
have classes describing the sensoric features of a
device and such for the possible actions. Different
instances are put together in a list and stored in the
CIMOM with the instance of the security device itself.

The capability classes correspond with the existing
filter classes, this means, the features addressed with
an instance of “IPHeadersFilter” are collected in
“IPHeadersFilterCapability” like shown in figure 6.

Figure 6: Capability class example

IPHeadersFilter

HdrIPVersion: uint8
HdrSrcAddress: uint8[]
HdrSrcAddressEndOfRange: uint8[]
HdrSrcMask: uint8[]
HdrDestAddress: uint8[]
HdrDestAddressEndOfRange: uint8[]
HdrDestMask: uint8[]
.
.
.

IPHeadersFilterCapaility

HdrIPVersion: uint8[]
HdrSrcAddress: boolean
HdrSrcAddressByRange: boolean
HdrSrcAddressByMask: boolean
HdrDestAddress: boolean
HdrDestAddressByRange: boolean
HdrDestAddressByMask: boolean
.
.
.

Border Gateway

firewall

PSA

sensor

local firewall

local controler

NSSM

topology extractor

rule builder

TMP

control interface

policy controler

affected devices

ini
tal

 ru
les a

nd
 fo

reca
st

lo
ca

l d
ec

is
io

n

forecasted rules

decision request

decision

pa
ck

et
 in

fo
rm

at
io

n

5.1. Class tree

To organize the capabilities in a homogeneous and
continuous structure within the CIM we reworked the
already existing structure of the network filter classes
and based our hierarchy on this.

In accordance with the network filter scheme we
decided to take the concept of multiple “Entries” that
are concatenated in a “List”. The starting points were
labeled “FilterCapabilityEntryBase” and “Filter
CapabilityList” respectively “ActionCapabilityEntry
Base” and “ActionCapabilityList”.

As we need filters and actions for different aspects
of a computer system and not only for the network, we
put these classes into the core-model. The above
mentioned “IPHeadersFilterCapability” is a subclass
of “FilterCapabilityEntryBase”. Together with
“8021FilterCapability” it can describe the features of a
packet filter appliance. The class hierarchy diagram is
shown in figure 7.

Figure 7. Capability description classes

 To keep the correspondence between capabilities
and filter parameters, it is necessary to move the
classes “FilterEntryBase” and “FilterList”, which form
the base for the network filters, up to the core-model.

These filter classes should not contain any action
parameters, so we needed a similar structure for
defining actions in the CIM standard and added
“ActionEntryBase” and “ActionList” as counterpart of
the filter base to the core-model.

5.2. Standardization

Most of the changes invented in this project were
discussed during the weekly phone conference of the
SPAM working group and have been improved with
the feedback of the group. Currently we are reworking
the first partial implementations and try to create a
working prototype of the complete system. It is
planned to discuss the model within the working group
again and bring in the results into the standardization
process.

6. Conclusion

We unfortunately could not implement all features
we wanted to, because none of the components
currently used supports CIM. So a lot of wrapper and
interfaces were created, that have only a partial
implementation of the originating features.

We think the presented work shows the necessity to
introduce a capability description scheme and
generalize and unify the filter and action scheme. In
our opinion such a structure and its implementation in
forthcoming products, would make it much easier to
develop and deploy system wide management and
security services in a network. Especially for
heterogeneous networks with different types of
operating systems or in public ones were no “single
product” software solution is possible, the invention
of standards will bring us closer to “plug & play
security”.

[1] CIM Schema v2.7, DMTF
 http://www.dmtf.org/standards/cim/cim_schema_v27

[2] WBEM Services, Sun Microsystems Inc.
 http://wbemservices.sourceforge.net

[3] Java Native Inferface, Sun Microsystems Inc.
 http://java.sun.com/j2se/1.4.2/docs/guide/jni/

[4] jpcap – http://jpcap.sourceforge.net/

[5] pcap - http://www.tcpdump.org/

[6] netstat – network statisics tool

[7] netfilter http://www.netfilter.org/

FilterCapabilityEntryBase ActionCapabilityEntryBase

LogicalElement

IPHeadersFilterCapability UserdataFilterCapability

